Na il

€ NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
: ' WasuingTon, D.C. 20546 ' '

REPLY TO

ATTN OF: GP
TOs UsI/scientific & Technical Information Division
Attentions Miss Winnie M. Morgan
FROMs GP/office of Assigtant General Counsel for

‘Patent Matters

Q

SUBJECT: Announcement of NASA-Owned U. 8. Patents in STAR

In accordance with the procedures agreed upon by Code GP
and Code USI, the attached NAsA-owned U. S§. Patent is being
forwarded for abstracting and announcement in NMASA STAR.

The following information is provideds

U. S. Patent No. Co 5/7, /7/
) @az/:./am"o Zn&/ /%«75 ey 7&{

Government or

Corporate Employee g ﬂ"sade'm / C(l/"f:
Supplementary Corporate

Source (if applicable) 3 J pL

NASA Patent Case No. z /ypﬂ—70567 '-

NOTE - If this patent covers an invention made by a corporate
employee of a NASA Contractor, the following is applicable:
Yes& No []

Pursuant to Section 305(a) of the National Aeronautics and
Space Act, the name of the Administrator of NASA appears on
the first page of the patent; however, the name of the actual
inventor (author) appears at the heading of Column No. 1 of
the Specification, following the words ®". . . with respect to

£l ot

Elizabeth A, Carter N7 1 éé é § 5

Enclosure

¥ o~

Copy of Patent cited above @ (ACCESION 7 (THRU]
Ny =

£ (PAGES) (coDE)
<

(NASA CR OR TMX OR AD NUMBER) (C/&Té‘S&)hY)

§ { ,& a
& P
A N}

June 23, 1970 A. A. AVIZIENIS 3,517,171

SELF~TESTING AND REPAIRING COMPUTER

Filed Oct. 30, 1967 6 Sheets-Sheet 1
MG R B o),
A — > READ ONLY A — READ-WRITE A — READ-WRITE
B3 MEMORY 84 MEMORY ™1 B85 MEMORY ™2
b
26 ﬂ 28]L 30 ﬁ 2
BUS ™| f
A BUS A BUS
El ———CHECKER™ [—10 E3 - |CHECKER™ [
E2 14 Ea
16
A e S A i
INPUT-QUTPUT LOGIC |
Bo UNIT ® PROCESSOR |
B6 ~r———of
\ 7
34 24
32
A __ T . R —
INTERRUPT CONTROL e
er | uniT >ARITHMETIC | |
INTERRUPT |, | ¢ B2 PROCESSOR &
REQUEST ——12% | 1 ¢ A
SERVICE { CLOCK |
INTERRUPTS INTERRUPT 20,
A — = SYSTEM AT MAIN
gg =——CLOCK UNIT ARITHMETIC e
. “ Bl — | PROCESSOR
36 =
INTERRUPT 104 i A
REQUEST i v A cOoNIRO-
status (Bl —— | CONTROL &
LINE B2 ™ Sa—1 aUS
GROUPS | | DIAGNOSIS UNIT T3 CHECKER
. /[STATUS
7 5 SIGNALS
19
ALGIRDAS A. AVIZIENIS
FIG.] INVENTOR.

BY

ATTORNEYS

June 23, 1970 A. A. AVIZIENIS 3,517,171

SELF-TESTING AND REPAIRING COMPUTER

Filed Oct. 30, 1967 6 Sheets~Sheet 2

MAIN POWER LINE

'_,46
44

SWITCH CONTROL 56) \ — 6)4 SWITCH STATUS
FROM CDU TO CDU
48— UNIT POWER INPUT
INFORMATION |} o T - .
- FUNCTIONAL o INFORMATION
INPUT FROM OUTPUT TO
BUS ® UNIT =
BUS
40~ — T
) 42
50 % '
38 58
CONTROL | _CGLOCK 77 | L ACTIVE STATUS
e oy | Ne. 52 /8% compLeTE | OUTPUTS
RESET INTERNAL TO CDU
54 ‘62 FAULT
70
o e e o e e e e S e S A
NUMERIC OPERAND WORD 72,
bo bt bz b3 b4 bs bs b7
74 76 78
\‘ \ INSTRUCTION WORD /
c(a) a3 az al ago c3 c2 cl
OPERATION COMMAND
ADDRESS PORTION PORTION
INVENTOR.

ALGIRDAS A. AVIZIENIS

NS

FIG. 2C

3,517,171

A, A. AVIZIENIS
SELF-TESTING AND REPAIRING COMPUTER

June 23, 1970

6 Sheets—-Sheet 3

Filed Oct. 30, 1967

INET H3MOL NIVIN L

ov]

LdNYHILNI

SENndinNe
_j HOLims TOHLNOD HOLIMS
027 ¥43mod _ %:m: ~ 2g ®
— = - - — = = — =l = - =
| i
oy [| N
J >
I.sna “ L1l o <
. 431S193Y L * <
| LNIOd MovgToy | 2
eI | \wO. (o .59 &
* e O
¥3151934 SS3WAAY ~ ~1-C Swwaois g
NP _ NOILONYLSNI LNIHYND e ST | alies
2.58n8 =— Gl 11 .AI_{.vw SIVYNOIS
“ mm:.w_\wmm £ - SNLV1S
Y3MO3IHO sn8
| TLNOILY¥Od $S3yaay e | yamamon | 1o Nee
| ~+— svnels
o | ¥315193Y N Tuna LN
“FVI# HOLVHVAWOD [T
| sne ANVIWWOO NOILYY3dO 06 29
_ r 71T + F i I— STYNDIS
wll \wm 801 21l —| 20l ﬁ SNLY.lS
= 1 3131dIN0D
00|~
| |HOLvuaNTD YILNNOD| gq | o
| A -—=--) S1UYNOIS
isTnd { 37040 o SNLVLS
| 00710 8¢ | 8 ww.,_Dn_.«_ ~+—— | 3AIlov
w L 1nd1no L« | 86
h - T T 7T ONAS T :Wlm_ . T T~ 1
. lndino ONVWWOD 94
#0010 .Nm\¢ 183n03Y 1383y

7«.@

INVENTOR.

BY

ATTORNEYS

June 23, 1970 A. A. AVIZIENIS 3,517,171

SELF-TESTING AND REPAIRING COMPUTER

Filed Oct. 30, 1967 6 Sheets—Sheet 4

STATUS OUTPFUTS

COMPLETE

MAIN
INTERNAL SWITCH POWER
ACTIVE FAULT CONTROL | |ng
50" T—&se—'T 66""‘1_;‘65'7 - T T T T
154 /|52 156 |
CONTROL ‘ACLOCKI COUNTER & ' [;
SYNC. 124 POWER ST
INPUTS | oo LOGIC — L] SwiTen Jﬂ_iwsm
i CIRCUIT | STATUS
54" - 7 I
: 52 ‘
| 32 140 |
n / /
| OPERATION | INDEX]
| COMMAND REGISTER *I- %
10 |3o{ REGISTER |
BUS ™1 |]l 142 |
. INDEX © | | |
Bus "2 | REGISTER™2 |
R |
12 '] 1aa | 147
| CONDITION] 1/ \
| CODE .| ADDER i
22 | REGISTER 1! }
\W' } 137 | (49— | BUE 2
146 |
{
| so_) SEQUENCE | | 2
et U
: REGISTER :\!38
FIG. 5
MAIN
POWER
LINE
46 57B 59B &iB
S7A . 59A _ 6IA \ \
SGA\ AN] l } 648 FIG. 8
I\] 64a seely : \Z —_—
i m e AN
ALGIRDAS A. AVIZIENIS
FUNCTIONAL FUNCTIONAL INVENTOR.
UNIT UNIT
T(ORIGINAL COPY) T T (FIRST SPARE) TBY
40A | .
38A 42A 408 305 a2s "Z""‘M’i & g{‘u&““ﬁ’&

ATTORNEYS

June 23, 1970 A. A. AVIZIENIS 3,517,171

SELF-TESTING AND REPAIRING COMPUTER

Filed Oct. 30, 1967 6 Sheets—Sheet 5
8oy FIG.6 RESET
[- T T T Lsa
I 1
| ‘ | FrROM
I~ |COUNTER
>
™.
crom cap | 1€° 1 =
ACTI M‘:-f: ki I |
CTIVE J I ,@j? : ﬂ'ﬁé E-:”?: { D,:g @‘ pg %

Acap Acap % @, b Py b, B
FROM cap | /l©2
COMPLETsj“—*. —-

i
|
|
168
EE v o |
©0 Ccap OPERATION COMMAND
| /lea DECODER |
INTERNAL — " [I
FAULT /= 1~ - 194 Xmap' ' Xp L

62’

BUS /

|

CHECKER ' Xeap Xcap }
SIGNALS T
|

2-OUT-OF-4 \

B2 e ——— E2 { E3 | E4 ;

g3 _PROD.8& RES,

Eq 2-0UT-OF-4 |

Xcap Acop Xcap

n
n
o}
T

s

193 Ti“ —
-7
S ____'9%[\11 : INVENTOR.
l 197 | |ALGIRDAS A. AVIZIENIS
l
I

TO CAP TO MAP TOLP ,Z(M clemberq & %ﬂxﬁu:_{l

SWITCH CONTROLjSZ' ATTORNEYS

RESET
i
|

June 23, 1970

A, A, AVIZIENIS

SELF-TESTING AND REPAIRING COMPUTER

Filed Oct. 30, 1967

3,517,171

6 Sheetis-Sheet 6

16,7
§_<> o - . RESET
54! _i |
! 7| FrROM
| T ICOUNTER
58’ oz - —H —es
\{FROM MAP g l | | : T‘:::‘]E
. ¥ i |
ACTIVE i__;_ T &, | Qj}s § e v ‘(’19 b
, | Amapd , P P2 Pe |
oo N Amap
FROM pMAR
COMPLETE| — - T~ 204 o5 [
—) |
ez |) OPERATION COMMAND S0
S O'P
INTERNALJ FREMA MaP ,C\"""P DECODER l
FAULT L - ‘ 206 o8 l
: Frmap 1 \
. 86~ El] Xcap Xip
BU E 3
CHECKER Xmap Xmap L l
SIGNALS
|

f
|
|
|
|
|

INVENTOR.
ALGIRDAS A. AVIZIENIS

Bl

TO LP

TO CAP
TO MAP

827 SWITCH CONTROL vAMcQQAJrvLe! & Fradiel.

ATTORNEYS

United States Patent Of

3,517,171
Patented Jume 23, 1970

ice

1

3,517,171

SELF-TESTING AND REPAIRING COMPUTER
Algirdas A. Avizienis, Los Angeles, Calif., assignor, by

mesne assignments, to the United Ststes of America

as represented by the Administrator of the National

Aeronautics and Space Administration

Filed Oct. 3¢, 1967, Ser. No. 679,055
Tat. Cl. GO6f 11/04

Us. CL 235—153 16 Claims

ABSTRACT OF THE DISCLOSURE

A computer system composed of a number of function-
al units, each performing a major function, the system in-
cluding a Control and Diagnostic Usnit (CDU) which
continually monitors the urits for faults and replaces a
faulty unit by switching off its power and switching on
power to its replacements. The functional units com-
muicate with each other over only two busses, and all
communicated words are encoded by error-detecting
codes. As a result, two bus checking units which monitor
the two busses detect errors indicated by the codes and send
fault indicating signals to the CDU. When a fault is de-
tected, the CDU stops the program and resumes it at a
previous rollback point indicated on the computer pro-
gram. The program contains numerous rollback points
along it, at which the computations can readily be re-
sumed. If the fault persists, the faulty unit is replaced.

ORIGIN OF THE INVENTION

This invention described herein was made in the per-
formance of work under a NASA contract and is subject
to the provisions of Section 305 of the National Aeronau-
tics and Space Act of 1958, Public Law 85-568 (72 Stat.
435; 42 USC 2457).

BACKGROUND OF THE INVENTION
Field of the invention

The invention relates to computer systems, and, more
particularly, to self-testing and repairing computer sys-
tems.

Description of the prior art

Reliable performance of digital systems is usually at-
tained by selecting highly reliable components and pack-
aging, and by utlizing extensive verification techniques for
the design and for the programs. Despite the use of such
reliability-assurance techniques, the system may still fail
during use because of uncontrollable or undetected faults.
Such faults may arise due to undetected design errors,
random failures of components or connections, and ex-
ternally induced failures due to radiation, sparks, mecha-
nical damage, and other environmental conditions. The
effects of such faults can be controlled by the introduc-
tion of protective redundancy to the system. Protective re-
dundancy refers to the use of additional components or
systems to mask or to replace a faulty portion of the
system.

One application of digital systems which requires ex-
treme reliability is in guidance and control computers
for unmanned spacecraft. Such computers are required
to survive space voyages to other planets which range up
to several years in length, performing on-board processing
of scientific data during most of the voyage and perform-
ing approach guidance and control computations at the
end of the voyage. The computer systems for such appli-
cations are almost fully utilized during approach to the
planet, and it is desirable to provide means for rapidly
replacing defective components during computations while
employing the computer at high capacity.

[

10

15

20

25

30

40

45

55

60

2

Two basic approaches to system design for fault toler-
ance have been suggested. One approach is the use of
massive triple modular redundancy (TMR) in which
logic signals are handled in three identical channels and
faults are masked by vote-taking elements distributed
throughout the system. The other approach is selective
redundancy in which the system is monitored for faults,
and faulty elements are replaced with spares. While the
TMR approach has some advantages over the selective
redundancy approach, including immediate correction of
faults, elimination of the need for fault detection appara-
tus, and simplicity of design, the selective redundancy ap-
proach also has many advantages. The advantages of the
selective redundancy approach over the TMR approach
include the fact that power is required by only one copy
of most replaceable items, all spares can be utilized, the
difficult initial checkout characteristic of TMR systems
is eliminated, and transient faults such as those due to
sparks can be tolerated by the system. Extensive design
studies have indicated that a selective redundancy system
would be desirable in certain applications, including those
for unmanned spacecraft on long duration missions.

A selective redundancy system must be designed fto
perform special functions in addition to the ordinary func-
tions of a computer. Specifically, the system must incor-
porate some means of fault detection, a recovery proce-
dure to allow for the case of transient faults, a replace-
ment procedure including switching means for the case
of permanent faults, and a check-out procedure for ap-
plication to all spares before the mission.

Among important requirements of a selective redund-
ancy system to the provision of means for detecting a wide
variety of faults, including those which can be indicated
by the use of error-detecting codes and those which can-
not. Another requirement, which is among the most funda-
mental hardware considerations, is the provision of a
switching arrangement for reliably eliminating a defective
unit, even in the case of catastrophic failure and replacing
it with a spare. The reliability of such a switching arrange-
ment is a limiting factor in the reliability of the entire
system.

OBJECTS AND SUMMARY OF THE INVENTION

Accordingly, one object of the present invention is to
provide a computer system for automatically correcting
a wide variety of faults within the system, which can
tolerate a greater number of faults than systems available
heretofore;

Another object is to provide a self-repairing computer
system which utilizes a minimum of power.

In accordance with the invention, there is provided a
self-testing and repairing computer system subdivided into
several replaceable functional units. Each functional unit
performs a major function of the system. Various circuits
are provided to monitor the system for faults, these cir-
circuits located both within the functional units and in two
separate checking units whose only function is to detect
certain types of faults. A separate Control and Diagnosis
Unit (CDU) receives all fault indication signals and con-
trols recovery procedures. The recovery procedures in-
clude testing of the possibly faulty units and placing the
units when necessary.

The two separate checking units whose only function
is to detect certain types of errors, operate by monitoring
the communication channels connecting the unit to detect
faulty outputs. The inclusion of only two separate check-
ing units to monitor the communication channels is made
possible by uvtilizing a limited number of busses for carry-
ing all data internally, and by enccding all data in error-
detecting codes. If the output from any functional unit
to a bus is erroneous, the bus checking unit monitoring

3,517,171

3
the bus detects the error. When a permanent fault is de-
tected, the offending unit is replaced with a spare.

The fault-detecting circuits within each functional unit
have an output line connected to the CDU to indicate the
existence of faults, such as disagreement between a dupli-
cated internal sign detection circuit, which would not
necessarily be indicated on the encoded word output.
Fach functional unit also has output lines connected to
the CDU indicating whether or not it is delivering output
data at every instant. The CDU checks whether each
functional unit is operating and is quiescent when it
should be to further detect the existence of faults.

If the CDU determines that a fault exists, it interrupts
the current program and execules an emergency sequence.
First, a segment of the current program is repeated from
2 designated “rollback point” instruction in order to cor-
rect the error, if it was due to a transient fault. If the
fault persists, the faulty unit is replaced by a spare by
switching off power from the faulty unit and switching
on power to its spare. After such replacement, the pro-
gram is again “rolled back,” i.e., resumed at the instruc-
tion designated as the “rollback point.” The program
executed by the computer contains many specified roll-
back points, which are convenient points at which to re-
sume computations, This eliminates the need to roll back
to the beginning of the entire program, and therefore
reduces the time required to correct a fault.

The replacement of faulty units by their spares is a
highly eritical operation. Instead of switching the many
input or output lines of a faulty unit, replacement is
accomplished merely by removing power from the offend-
ing unit and applying it to the spare. The units are con-
structed so that they deliver logic zero outputs when not
functioning. Most of the units are constructed so that,
when they are serving as spares on a standby basis, they
do not consume any power.

The computer generally employs words of 32-bit length.
The machine words are carried by the busses to the
functional units in 4-bit bytes, that is, in a series-parallel
mode, There are primarily two different types of words,
numeric operand words and instruction words. Both
types have a 32-bit, or 8-byte length. The numeric operand
word contains the information to be processed. The other
type of word, the instruction word, contains a 3-byte
operation command portion indicating the operation to
be performed, such as an addition and a 5-byte address
portion indicating the address in the memories at
which the numeric operands to be processed can be
found.

The numeric operand words and the instruction words
are encoded by three different error-detecting codes. The
8-byte numeric operand is encoded by a product code.
The product encoding method is desirable for enabling
the detection of errors of the type most likely to occur
in arithmetic processing. The instruction word employs
two different codes, one for the 3-byte operation com-
mand and a separate one for the 5-byte address portion.
The operation command portion has a “two-out-of-four”
encoding, wherein every 4-bit byte contains two 1’s and
two O's This is efficient for detecting the type of errors most
likely to occur in transmission. The address portion is
encoded by a residue code. This code is efficient for the
operations generally performed with the address portion.

Two busses carry all of the data transmitted between
the functional units, including the numeric operands and
the instruction words. The bus checking units which moni-
tor the busses check all information transmitted, and
detect errors in any of the three type of encoded words.
The product and residue codes utilize the same checking
circuits inasmuch as they are identical from the stand-
point of error detecting.

Each instruction of the program is accomplished in
three phases, referred to as phases 1, 2, and 3. In phase 1,
the memory units are requested to deliver an instruction.
In phase 2, the memory units deliver an instruction word

(=4

10

30

40

69

65

70

Ut

4

which commands one or more of the functional unils
to act during phase 3 and which carries an address which
may be indexed. After any indexing, the instruction word
address is delivered to the memory units to indicate the
address of the numeric operand word they must deliver
during phase 3. In phase 3 a memory unit may deliver a
numeric operand and the functional uait commanded
during phase 2 to act on it, acts on it.

The novel features of the invention are set forth with
particularity in the appended claims. The invention will
best be understood from the following description when
read in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computer system con-
structed in accordance with the invention;

FIG. 2A is a representation of a 32-bit word utilized
in the computer system of FIG. 1;

FIG. 2B is a representation of an 8-byte numeric
operand word having the form of the word FIG. 2A;

FIG. 2C is a representation of an 8-byte instruction
word having the form of the word of FIG. 2A;

FIG. 3 is a block diagram representation of a general-
ized functional unit of the computer system of FIG. 1;

FIG. 4 is a block diagram representation of a Control
and Diagnosis Unit of the system of FIG. 1;

FIG. 5 is a block diagram representation of a control
arithmetic processor of the system of FIG. 1;

FIG. 6 is a partial block diagram representation of the
comparator logic complex of the Control and Diagnostic
Unit of FIG. 4, showing the circuitry for detecting and
correcting faults in the control arithmetic processor unit;

FIG. 7 is a partial block diagram representation of the
comparator logic complex of the Control and Diagnostic
Unit of FIG. 4, showing the circuitry for detecting and
correcting faults in the main arithmetic processor unit;
and

FIG. 8 is a simplified block diagram of an arrangement
for replacing a unit with a spare.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

To facilitate an understanding of the invention, the
following description is presented in five parts. Part 1,
entitled “General Description,” describes the overall sys-
tem shown in FIG. 1. Part 2, entitled “Description of
Codes,” describes the three error-detecting codes used for
encoding information carried over busses between func-
tional units of the system. Part 3, entitled “General De-
scription of Functional Units,” describes the functions of
the various functional units in relation to the operation
of the system. Part 4, entitled “Description of Control and
Diagnostic Unit,” describes the construction and opera-
tion of this unit; this part also describes the control arith-
metic processor. Part 5, entitled “Detection of Faults in
Control Arithmetic Processor and Main Arithmetic Pro-
cessor,” describes the operation of the Control and Diag-
nostic Unit in relation to these two units.

(1) General description

FIG. 1 is a block diagram showing the general organ-
ization of the computer system of the invention. The par-
ticular system shown is a fixed-point binary computer
suitable for spacecraft guidance applications. The system
is divided into replaceable functional units connected to-
gether by two busses 10 and 12, referred to as the first and
second busses, respectively. The busses carry information
words between functional units. Each information word
generally comprises eight serially-delivered bytes, each
byte containing four bits. Accordingly, each bus 18 and
12 has four conductors for carrying the four bits in
parallel.

The monitoring of the system for faults is accomplished
by two bus checkers 14 and 16, a Control and Diagnosis
Unit (CDU) 18, and fault detecting circuitry in each of

3,517,171

the nine other functional units. The CDU 18 has nine
groups of inputs, B1 through B9, referred to as its status
line groups 17, each of the nine groups comprising three
lines from one of nine functional units. The CDU 18
also has four bus checker status signal inputs E1, E2, E3
and F4, shown at 19, which are connected to the outputs
E1, E2, E3 and E4 of the bus checkers 14 and 16. Faults
which result in the generation of erroneous data are in-
dicated to the CDU 18 by signals received over the bus
checker status inputs 19. Faults which result in the mal-
functioning of a unit, but which may or may not result
in obviously erroneous data words, are detected by the
CDU through monitoring of the status line groups 17.
The CDU serves as a control means responsive to fault
indicating signals for performing fault-correcting proce-
dures. The bus and bus checkers, and the status line groups
and circuitry within the CDU connected to the status line
groups, serve as monitoring means for monitoring the
functioning of the functional units.

The bus checkers 14 and 16 are enabled to detect errors
in transmitted data by reason of the encoding of the data
by error-detecting codes. Substantially all of the informa-
tion transmitted between functional units is carried on one
of the busses 10 and 12, and all of such data is encoded.
Three different codes are used for three different types of
information. Each bus checker is capable of detecting
errors in words encoded in any of the three codes. If such
an error is detected, one of the inputs EX through F4 of
the CDU indicates its occurrence, and the CDU can de-
termine which functional unit is at fault by noting which
unit has delivered the information.

(2) Description of codes

Three different error-detecting codes are utilized for
optimum encoding of three types of information which
is transmitted over the two busses between the functional
units. One type of information is the numeric operand
word, which constitutes the data to be operated upon. An-
other type of information is contained in an instruction
word for indicating the operation to be performed and the
address of the operand word upon which the operation
is to be performed. The instruction word has two por-
tions: the operation command portion and the address
portion, and each of these two portions is encoded by a
different code.

FIG. 2A represents a data word 70 of the type trans-
mitted between functional units of the system, comprising
32 bits. FIG. 2B represents a numeric operand word 72
of eight bytes, each byte containing four bits. FIG. 2C

represents an instruction word 74 having an operation ;

command portion 76 with three bytes and an address por-
tion 78 of five bytes length. The numeric operand word
72 is encoded by a product code, the operation command
portion 78 of the instruction word is encoded by a two-
out-of-four code, and the address portion 76 of the
instruction word is encoded by a residue code.

The numeric operands, represented in FIG. 2B, are 32
bits long and are binary product-coded numbers with the
check factor 15. These operand words are obtained by
multiplying an uncoded information word of 28 bits
length by 15 to obtain the product-coded 32-bit operands.
The check factor 15 has been found to be especially ef-
fective in the case of series-parallel transmission and in
computing in bytes of 4 bits length. The checking algor-
ithm utilized by the bus checkers 14 and 16 computes
the modulo 15 residue of coded words which are trans-
mitted on the busses 10 and 12. A zero residue (rep-
resented by 1111) indicates a coded word. All other
residues indicate a fault in the functional unit which
delivered the word to the bus.

The 32-bit instruction word, represented in FIG. 2C,
consists of a 12-bit (3-byte) operation command portion
78 and a 20-bit (5-byte) address portion 76. The address
portion is encoded in the residue code with check mod-
ulo 15. An address portion consists of a 16-bit binary

[

10

30

40

44

60

6
address a, an a 4-bit check symbol, ¢(a). The check
symbol c¢(a) has the value

c(a)y=15—/a/ys

where /a/y5 is the modulo 15 residue of a. The check-
ing algorithm, utilized by the bus checkers 14 and 16,
computes the modulo 15 residue of an address and adds
this modulo 15 residue to the check symbol c(a). It
should be noted that the four bytes 9¢ through 93 of
the address portion 76 represent the uncoded address, so
the address is available without decoding.

The presence of a properly coded address portion 76
is indicated by the generation of a zero sum (represented
by 1111). The residue code is preferable for address por-
tions, as compared with the product code utilized for the
operands, because the address, represented by the first
16 bits (the bytes a0 through «3), is available to the
memory address decoding circuits in its ordinary binary
form. It should be noted that the “1’s complement,”
15—/a/ys rather than the residue, /a/ys5 itself is used
as the check cymbol c(a). The use of the 1’s complement
provides the same faul-detection effectiveness in byte-
serial operation as for product-coded operands, while the
use of /a/y5 as a check symbol would give a lower ef-
fectiveness. Furthermore, the bus checking algorithm is
the same for product-coded operands as for the address
portions, which enables the same bus checker circuits to
be utilized for both. The checking algorithm is simply
a modulo 15 summation of all bytes and a test of the
result for the zero value represented by 1111.

The operation command portion 78 of the instruction
word represented in FIG. 2C is divided into three bytes
of four bits each. The operation command bytes are en-
coded by a two-out-of-four encoding. Of the sixteen com-
binations of four bits, six combinations include exactly
two “1's” (e.g., 1001 and 0101). Such coding is most
efficient for short words and is acceptable in a computer
because the operation command portions are not sub-
jected to arithmetic operations. It is evident that the
validity of the operation command portions must be tested
by a separate circuit, since they cannot be verified by the
modulo 15 checker. The separation of the operation com-
mand portion into three separately-encoded bytes facili-
tate the decoding and validity testing of the operation
command portions received by the functional units. The
two-out-of-four encoding gives a total of 216 distinct
combinations for operation codes (because it has three
bytes, each byte taking six values to yield 63=216
combinations).

While three different codes are used in the particular
embodiment described herein, a single encoding scheme
such as the residue encoding with the check modulo 15
could be applied to ali three types of data, including the
numeric operand words and operation command portions
of the instruction words. While the use of one code would
have the advantage of identical check algorithms, the
use of different codes also has advantages. For example,
the two-out-of-four coding for individual bytes of the
operation portion permits validation and use of individual
bytes. The use of three different codes was selected for
a particular system which was constructed to permit a
detailed insight into the relative merits and shortcomings
of the different codes by observing them in actual opera-
tion.

(3) General description of functional units

The block diagram of FIG. 1 illustrates twelve dif-
ferent functional units of the computer system. As men-
tioned above, the bus checkers 14 and 16 detect errors
in words transmitted over the two busses, while the CDU
18 checks for faults and performs recovery and replace-
ment procedures. The system includes a main arithmetic
processor 20 which performs arithmetic operations with
operands supplied to it, and delivers the results. It also
includes a control arithmetic processor 22 which stores

3,517,171

7

the address of the next instruction to be executed and
performs indexing (addition of a constant) to the address
portion of the current instruction. A logic processor 24
performs bit-by-bit logic operations on operands supplied
to it.

A read only memory 26 contains the permanent pro-
egram and associated constants to be used by the system
during a given mission. At least two read-write memory
units 28 and 3@ are used to store additional programs
and data generated in the operations of the computer,
and up to 12 such units may be included. An interrupt
unit 32 and an input-output unit 34 serve as interfaces
for the entire computer system, for receiving informa-
tion into the computer system and delivering it there-
from. A system clock unit 36 keeps a record of elapsed
time and generates signals for the sequencing and time
keeping functions of the computer.

Each standard cycle of operation consists of three
phases. During phase 1, the address of an instruction is
generally sent from the control arithmetic processor 22
to one of the memory units 26, 28 or 30. During phase
2, the memory unit which has been addressed in phase
one broadcasts an instruction word. The instruction word
consists of an operation command portion and an ad-
dress portion and is broadcasted to all functional units
by delivering the information to the first bus 10 and
through the control arithmetic processor 22 to the second
bus 12. If required by the operation command, the
control arithmetic processor 22 performs an indexing
operation on the address. During phase 2, the appropri-
ate units recognize the operation command are thereby
prepared to accept the address during phase 2 and/or
initiate execution during phase 3. During phase 3, if
equired by the instruction word, a memory unit delivers
an operand to the first bus, the operation is executed,
and a result is placed on one of the busses and accepted
by the destination unit. Every time information is trans-
mitted between units, the bus checkers 14 and 16 test
the word for proper encoding.

FIG. 3 is a block diagram showing the input and
output lines leading to a typical functional unit of the
computer system, The unit 38 has a set of four input
lines 48 and four output lines 42 for receiving informa-
tion and delivering it to the busses, one byte at a time.
A power switch 44 selectively connects power from a
main power line 46 to the unit power input 48 to operate
the unit. A switch coutrol line 56 delivers signals from
the CDU to open or close the switch, while switch out-
put line 64 delivers a signal to the CDU to indicate
whether the switch is open or closed.

The functional unit 38 has three additional input lines
comprising a clock input 50, a sync input 52 and reset
input 54, which are all connected to the CDU. The clock
input 50 supplies the unit with a train of clock pulses,
the sync line 52 provides synchronization pulse signals,
and the reset line 54 provides a signal which resets the
unit from its present internal configuration to a stand-
ard initial state. Three status output lines are provided
which are also connected to the CDU, these being an
active line 58, a complete line 60, and an internal fault
line 62. The active line 58 provides signals that indicate
that the unit is delivering information to its output bus.
The complete line 60 provides a signal when the wunit
has completed an operation designated by the present
instruction. The internal fault line 62 provides signals
when an internal monitoring circuit of the unit 38 de-
tects an abnormal condition.

A general understanding of the operation of the com-
puter system can be had by considering, in somewhat
greater detail, the functions performed by each of the
functional units shown in FIG. 1. The main arithmetic
processor 20 performs all of the arithmetic operations
on the 32-bit numeric operand words (shown at 72 in
FIG. 2A) of the computer system. It receives inputs con-
sisting of an operation command (e.g., add, subtract,

o2

10

20

35

40

60

8

multiply, or divide) during phase 2 and a coded numeric
operand during phase 3. The output of the processor
during phase 3 comprises one or more 32-bit words fol-
lowed by a two-out-of-four condition code byte. The
condition code byte indicates one of three irregularities
(sum overflow, quotient overflow, or zero divisor), or,
if the result is good, the type of result (positive, zero,
or negative). If the result is good, the conirol arithmetic
processor 22 stores the condition code output of the
main arithmetic processor 2¢ for use during conditional
jump instructions. All results are delivered to the second
bus 12 during phase 3, where they are monitored by
the second bus checker 16.

The control arithmetic processor 22 performs the
functions of storing and indexing addresses, and of de-
livering the addresses to the memory units. These
addresses indicate the location in the memory units at
which instruction words or mumeric operand words are
to be found, and cause the memory units to deliver
these words. During phase 1, the control arithmetic
processor delivers an address to the memory units over
bus 2. During phase 2, the processor receives an address
from a memory unit and may index it and deliver the
indexed address to a memory unit over bus 2. During
phase 3, the processor may or may not function, de-
pending on the operation command received during phase
2. At phase 1 of the next instruction step, the processor
generally delivers the address delivered in the previous
step but augmented by one. To perform these opera-
tions, the control arithmetic processor contains registers

for storing addresses and indexing numbers, and an adder

circuit for performing the indexing. A more complete
description of the control arithmetic processor will be
given later in conjunction with FIG. 5.

The read only memory 26 contains the permanent
program and associated constants for a given mission.
Tt does not receive data during a mission, but only de-
livers it. The computer system includes complete replicas
of the read only memory as replacements.

The read-write memory units 28 and 3¢ store and de-
liver the information generated during computations.
They may also store additional programs for the com-
puter. Each read-write memory unit has three modes of
operation; a standard mode, an auxiliary mode, and a

_ relocated mode. In the standard mode, the unit serves as

the main or original unit, receiving and transmitting in-
formation for participating in the current computer op-
erations. In the auxiliary mode, the unit serves as a pow-
ered spare unit for duplicating a designated main unit. In
the auxiliary mode it receives and stores information sent
to its main unit so that it is ready to be switched to a
standard mode to replace a faulty main unit, and to check
the main unit operation. The auxiliary or spare unit stores
the same inputs as the main unit. However, while the
main unit reads out its word to the bus, the auxiliary unit
only reads out the same word internally and compares it
to the word on the bus. If the words disagree, the auxiliary
unit signals a comparison error to the CDU. If the fault
persists after repeat of the last program steps, the main
or auxiliary unit may be replaced. In the relocated mode,
the address of the unit is redesignated, so that it can serve
as a main unit for either the first memory 28 or the second
memory 30. This allows more flexible use of the spares.
Up to 12 read-write memory units of 4096 capacity words
each, may be used at one time in one system which has
been designed.

The input-output unit 34 and interrupt unit 32 serve as
interfaces with the external world. The input-output unit
34 contains buffer registers for receiving and delivering
machine words. The interrupt unit 32 receives commands
and service requests from parts of the spacecraft system
outside of the computer system. An interrupt is requested
from the CDU and is effected when the interrupt unit,
during phase 2, places a properly coded instruction word
on the first bus. Such interrupt occurs when the instruction

3,517,171

9
word preempts the delivery of the next instruction speci-
fied by the sequence register of the control arithmetic
processor 22. Phase 1 is omitted during an interrupt.

The system clock unit 36 contains counters needed for
the sequencing and time keeping functions of the com-
puter and the spacecraft. For example, the clock unit may
initiate a program portion every hour, which causes a
radiation measurement to be made. The clock unit out-
puts are coded machine words, so that they can be
checked for errors by the bus checkers. The clock unit
generates an internal interrupt request when a preset count
has been reached.

The two bus checkers 14 and 16 check all machine
words transmitted on the two busses for validity of encod-
ing. The ciricuitry for checking arithmetic codes includes a
four-bit check sum accumulator, and a four-bit modulo
15 adder which adds the bytes being transmitted to the
word in the check sum accumulator. The checking of
non-numeric two-out-of-four operation code bytes is
carried out by a separate logic circuit. In order to assure
that no checking for an arithmetic or residue code is
made when a two-out-of-four code word is on a bus, the
the CDU provides a signal to the bus checkers to prevent
such checking when a two-out-of-four code is being trans-
mitted, The bus checkers have a relatively small size, and
are physically incorporated in the CDU, using its power
supply and counter signals. The error signals E1 and E3
have the value one when the current check sum is not
1111, and the error signals E2 and E4 have the value
one when the current byte is not a two-out-of-four byte.

(4) Description of control and diagnostic unit

The control and diagnostic unit (CDU) 18 issues con-
trol signals which initiate and time each step of operation

of the system, and it controls recovery actions when a *

fault occurs. A description of the manner in which an
instruction is carried out by the computer system will
aid in the understanding of the CDU 18. The programs
to be carried out by the computer are contained in the
read only memory 26 and in the read-write memories 28
and 30. The complete program of operations may com-
prise perhaps 64,000 separate sequenced instruction steps,
all contained in the memory. A typical imstruction is
carried out in three phases, referred to as phases 1, 2 and
3. In phase 1 the CDU 18 delivers a sync pulse, and
delivers one 4-bit phase byte to bus 1 which carries it to
the control arithmetic processor 22. This byte commands
the processor 22 to deliver an address stored therein to
bus 2. This address is an address in one of the memory
units 26, 28 or 30.

In phase 2 of an instruction step, the memory units 26,
28 or 36 containing the address received on bus 2 during
phase 1 delivers the instruction word contained at that
address. This instruction word is delivered over bus 1 so
that it can be received by any of the functional units. The
first portion of the instruction word is the 3-byte opera-
tion command portion (see FIG. 2C), which designates the
the particular functional unit which will perform the
computation or other operation in the following phase 3.
The operation command portion also designates the partic-
ular operation, such as an addition or a multiplication to be
performed in phase 3. The last part of the imstruction
word from the memory unit is the 5-byte address portion
which indicates where the numeric operand word is to be
found on which the operation is to be performed. The
address portion passes through the control arithmetic proc-
essor 22 which indexes it, if required, and delivers the in-
dexed address over bus 2. The indexed address designates
an address in one of the memory units 26, 28 or 30 where-
in the numeric operand word to be acted upon is located.

In phase 3 the memory unit containing the address of
the numeric operand word to be acted upon, delivers that
8-byte numeric operand word over bus 1. The functional
unit which was designated in phase 2 as the unit to per-

ot

10

40

55

60

65

70

75

10

form the operation, receives the numeric operand word
and performs the required operation. The result is de-
livered to the proper bus. This result may be stored in one
of the memory units or delivered through the input-output
unit 34 to a circuit outside of the computer system.

Reference is now made to FIG. 4 which shows the
CDU 18 in greater detail. The CDU has a comparator
logic complex 8¢ which determines which unit is at fault
when a fault occurs. The complex 80 has switch control
output lines 82 which operate power switches to re-
move power from a faulty functional unit and apply it to
a spare. The complex also has a reset command output
54" which delivers pulses to the reset inputs (shown at
54 in FIG. 3) of functional units. The reset pulses are
delivered when a portion of the program must be re-
peated either to correct for a transient fault or after a
faulty unit has been replaced.

Some of the inputs to the complex 8¢ are received di-
rectly from functional units. These include groups of in-
puts 58’, 60’ and 62’ from the functional units (con-
nected to outputs 58, 60 and 62 of each functional unit),
indicating whether each functional unit is actively de-
livering an output, has completed an operation, or has
an internal fault, respectively. Another group of such
inputs 64’ (connected to output 64 of each unit) is
ceived from the power switches controlling the energiza-
tion of each of the functional units, to indicate whether
the switch is open or closed. Still another group of
inputs 86 represents the four inputs from the two bus
checkers.

The complex 80 has four additional inputs 88, 90,
92 and 94 which it receives from the internal circuitry
of the CDU. These four additional inputs indicate which
of the functional units in the computer system has a fault
when one of the functional units delivers a faulty output.
Thus, for example, if the output from a bus checker in-
dicates that a word on a bus is erronecous, the CDU
can determine which functional unit was delivering the
word. A pulse and cycle counter 108 has outputs (not
shown) connected to the registers within the CDU to
control them.

The operation of the CDU can best be understood by
considering the execution of an instruction step through
phases 1, 2 and 3 in detail, and particularly the role of
the CDU in the execution. The CDU has a clock pulse
train generator 96 which controls the basic timing of the
computer system operation. The generator 86 has two
outputs 5§’ (connected to the sync input 38 of each unit)
and %8, each of which carries a train of evenly spaced
pulses at a frequency such as 1 megacycle. The pulse and
cycle counter 108 receives clock pulses and uses them to
define the length of each of the three phases 1, 2 and 3.
Ten clock pulses define one cycle. Phases 1 and 2 are
each of one cycle duration, i.e., ten pulses dm‘&tion.]
3 is an integral number of cycles in lengt ’Hv
ence is due to the fact that phases 1 and e
and can always be performed in a short Een"th of time.
Phase 3, however, may involve complex computations;
for example, a division operation may require thirty
cycles.

An instruction step is begun when the pulse and cycle
counter 10¢ delivers a synchronizing pulse on its sync
output 52’ to the sync input of each functional urnit. An-
other output 102 of the counter is a 4-bit word delivered
to bus 1 and through the control arithmetic processor
(shown at 22 in FIG. 1) to line 2, indicating whether a
normal or abnormal instruction step is to occur. In a
normal instruction step, phase 1 is occupied by the de-
livery of an address from the control arithmetic processor
to the memory units. In an abnormal instruction step, the
control arithmetic processor does not deliver an address
during phase 1. An abnormal instruction occurs when
an external unit is interjected to control ome instruction
step (e.g., to enter data into a memory unit) or an in-
ternal interrupt is to occur.

re-

3,517,171

11

I an abnormal step, an interrupt request signal from
the Interrupt unit (shown at 32 in FIG. 1) is delivered
over line 104 to the counter 100 before phase 1 begins.
The interrupt request indicates that during phase 2, when
an instruction word would normally be delivered by one
of the memory units, an instruction word will instead be
delivered by the interrupt unit 32 to the first bus. When
an interrupt request is received at 164, the counter 196
delivers a 1-byte “phase 2 designation word” at 192 in-
dicating to all functional units that phase 1 will be
d and that the current phase is an abnormal phase
1-byte word at 102, which is delivered over bus
1, and through the control arithmetic processor to bus
2, is in a two-out of-four coding so it can be monitored
by the first bus checker. After delivery of an instruction
word during an abnormal phase 2, the functional units
act on it in the same manner as they act in a normal
phase 2. Phase 3 may then occur in the same manner as
for a normal instruction step.

During phase 1 of a normal instruction step, the one
byte counter output at 102 is delivered over the first
bus to the control arithmetic processor 22. The byte
from the counter 100 instructs the control arithmetic
processor 22 to deliver its current instruction address
over the second bus to the memory units. This current in-
struction address is also received by the CDU and en-
tered into a current instruction address register 106
whose input is connected to the second bus. The reason
why this address is entered into the register 106 is to pro-
vide an indication as to which mempory unit 26, 28 or
39 in FIG. 1 was supposed to have acted on the address
from the control arithmetic processor during phase 1.
If the addressed memory unit is not operating properly
during phase 2, the logic complex 80 can consult the
ister 106 by receiving its output at 94, to determine
which memory unit is at fault.

During phase 2 of a normal instruction, a memory
unit delivers an instruction word. If the memory unit
addressed during phase 1 is operating properly, it delivers
an instruction word from the address designated by the
output from the control arithmetic processor during phase
1. This instruction word is delivered over bus 1, and
through the control arithmetic processor to bus 2, so it
can be received by any of the functional units. The first
part of the instruction word is a 3-byte operation com-
mand portion. The operation command portion indicates
which of the functional units is to perform the operation,
and what operation it is to perform. This operation com-
mand portion is also received and then entered into an
operation command register 108 of the CDU. In case a
faulty output is delivered by a functional unit during
phase 3, the logic complex 80 can interrogate the opera-
tional command register 108 through line 90 to determine
which functional unit is supposed to be operating. The
operation command register 108 also delivers signals over
line 112 to the counter 106 indicating the number of
cycles required to perform the designated operation dur-
ing phase 3. For example, a simple entry of information
during phase 3 may require 1 cycle, while an arithmetic
division may require 30 cycles. If the unit operating during
phase 3 does not complete its operation in the designated
time, the output 88 from the counter to the logic complex
80 can indicate this.

The address portion of the instruction word delivered
by a memory unit during phase 2 is received by the con-
trol arithmetic processor 22. The control arithmetic proc-
essor generally receives this address portion, indexes it if
so instructed by the preceding operation command, and
delivers the indexed address to the second bus. The in-
dexed address delivered during phase 2 designates a
memory unit, and the address within that memory, unit
wherein a numeric operand word is to be delivered at the
beginning of phase 3. An address portion register 11§ of
the CDU stores this indexed address delivered over the
second bus by the control arithmetic processor. The in-

<

10

25

40

60

12
dexed address is stored for use in case the memory unit
which was supposed to receive the indexed address during
phase 2 delivers a faulty output at the beginning of phase
3. The logic complex 80 can determine which memory
unit is at fault by interrogating the address portion regis-
ter 110 through line 92.

Phase 3 of an instruction step is different for every
different operation command. During phase 3, a numeric
operand word in one of the memory units may be de-
livered over bus 1. The numeric operand word is taken
from an address designated by the indexed address de-
livered from the control arithmetic processor during
phase 2. This numeric operand word may be merely en-
tered into an accumulator register of a functional unit or
may be operated on in a complex manner. A word may
also be transferred from a processor umit to a memory
unit during phase. 3.

If no fault occurs, the program in the read only mem-
ory 26, or the read-write memories 28 and 30, is advanced
after every instruction step until a step is reached which
commands a halt. However, if a fault is detected by the
logic complex 80 in the CDU, the CDU performs fault
confirmation and recovery steps. When a fault is first
discovered by the logic complex 88, it rolls back the
program to a designated previous imstruction step and
begins the program from that rollback point. When such
a rollback occurs, the functional units (except the mem-
ory units) which contained information must be reset
so that the information is cleared out. Such resetting is
accomplished by delivery of a reset command over the
reset command output 54 of the logic complex 80. After
rollback, the program is advanced, step by step, and if the
fault was only a transient fault, then the program should
be executed correctly the second time. If, however, the
fault is repeated, the logic complex 80 notes this fact and
must take a new corrective step. The new corrective step
consists in again rolling back the program to the rollback
point and also replacing the offending functional unit
with a spare. The logic complex 80 can determine which
functional unit is at fault by interrogating its many in-
puts, as discussed above.

The rollback point to which the program rolls back
after a fault is detected is designated in the program of
the read only memory 26 or read-write memories 28 and
30. When the program is originally written, rollback
points are designated at various places in the program.
A rollback point is typically placed at the beginning of
a series of related instruction steps. The relationship of
the steps is such that no data is required at the beginning
of the series which is contained in any functional unit
except a memory unit.

Whenever a rollback point is reached by the computer
system in progressing through the program, its address
will have been entered into the address portion 110 dur-
ing phase 2. When an address in the vegister 110 is in-
dicated by the current operation command in register
108 to be a roliback point address, this address is delivered
over line 114 to rollback point register 11§ of the CDU.
When the next rollback point is reached, the previous
rollback point in register 116 is erased, and the address
of the new rollback point is entered into the register
116. A rollback point is designated by an instruction step
which instructs the address portion register 110 to enter
its address into the rollback point register 116.

When a fault is detected, the logic complex 8¢ delivers
a reset command on its cutput 54" and delivers a fault
signal to pulse and cycle counter 188. The reset com-
mand at 54’ erases all information stored in the func-
tional units, except the memory units, and resets them
to a standard starting condition. The fault signal to the
counter 10@ instructs it to deliver a sync pulse on its
cutput 52’, and to deliver a “phase 2 designation word”
(indicating that phase 2 of the current instruction step is
an abnormal phase 2) followed by a 3-byte “uncondi-
tional transfer” operation command on its output 102.

3,517,171

13
The 3-byte unconditional transfer operation command
at 102 commands the contro] arithmetic processor 22 to
store the following address part in its sequence register
(at 136 in FIG. 5). The rollback point register 116 then
delivers an address on its output 118 to the first bus.
This rollback point address is entered into the control
arithmetic processor, which delivers it to the memory
units during the next instruction step so that the program
resumes at the last roliback point which has been passed.

The use of rollback points in a program and a rollback
point register is for the purpose of reducing the recovery
time of the computer system. In many computers, the
detection of a fault results in the computer beginning
the program again at the first instruction. An entire prog-
ram may conssit of many thousands of instruction steps,
a typical computer for long spacecraft voyages utilizing
a program having a number of instructions on the order
of 64,000. While many instruction steps can be executed
in a very short time, such as 30 microseconds, other
instruction steps may cause the execution of a “loop”
sequence of instructions. A loop sequence of instructions
may require the repetition of the same instruction steps
many times, such as a thousand times, so that a consider-
able length of time is required to complete the “loop”
sequence. For example, the loop instruction sequence may
command the addition of a long column of numbers,
which may require a long period of time. Thus, if the
program had to be started at the beginning, a long period,
such as many seconds or even minutes, may be required
to reach the point at which a fault was defected. Such
a delay may be permissible in some applications where
data is not acted on in real time. However, many com-
putations required of the computer system, in terminal
guidance and other maneuvers, must be acted on in real
time. Therefore, delays of more than a small fraction
of a second cannot be tolerated. The inclusion of rollback
points limits the recovery time to a limited number of
instruction steps, so that recovery time is very short.

Protection against faults in the CDU 18 itself is realized
by simultaneously operating three powered CDU’s. The
outputs of the three CDU’s are connected to circuitry
which takes a majority vote of all CDU outputs and
dzlivers the majority command to the functional units.
In case of a two-to-one vote on an output line, the dis-
agreeing CDU disconnects its own power by operating
its power switch 120. A fourth powersd standby copy
of the CDU is maintained in the system. When the two
remaining CDU urits note that the third CDU has turned
itself off, they admit the powered spare CDU unit to the
voting on the outputs, and also turn on the power to a
new or fifth, standby CDU.

The individual functional units of the computer sys-
tem, including the contro} arithmetic processor 22, may
be of conventional types, and thersfore po detailed de-
scription of their operation is given, However, since the
control arithmetic processor 22 is extensively acted upon
by the CDU, as described above, a general description
of its comsiruction will aid in the understanding of the
CDU 18 and the computer system generally.

FIG. 5 is a block diagram of the control arithmetic
processor 22. The processor contains a 20-bit sequence
register 136, which holds the address of the next instruc-
tion and delivers it over its output 138 to the second
bus during phase 1.

Also, during phase 1, the address in the sequence reg-
ister 136 is sent on line 137 to the adder which incre-
ments the coded address by one and returns it on line 149
to the sequence register 136. The processor also contains
two 20-bit index registers 140 and 142 which hold address
portions, and an adder 144 which may be commanded by
an operation command to add the contents of one of the
index registers to a current address. During phase 2, the
output of the adder 144 is delivered over line 147 to the
second bus. A 4-bit condition code register 146 holds the
sign information previously supplied by the main arith-

[

10

30

40

50

60

65

70

75

14

metic processor and needed for completing conditional
jump instructions. A 12-bit operation command register
132 retains an operation command received during phase
2. A counter and logic circuit 134 has input lines 507,
62’ and 54" for receiving signals from the CDU and out-
put lines 58, 60" and 62" for delivering signals to the
CDU, and contains the logic circuitry for generally con-
trolling the operation of the processor.

During phase 1, at the beginning of an instruction step,
a 4-bit byte from the CDU is received over input 130
from bus 1. This byte enters the operation command reg-
ister 132, which delivers a signal to the counter and logic
circuit 134. The circuit 134 determines whether the con-
trol arithmetic processor 22 shall deliver an address dur-
ing phase 1 (which it generally does during a normal
operation step). If the processor has been instructed to
deliver an address during phase 1, the sequence register
136 delivers the address it holds over its output line 13§
to the second bus. The address from the sequence reg-
ister 136 is received by the memory units of the computer
system to enable them to act during phase 2. At the same
time as the sequence register 136 delivers the address it
holds, a new address is entered into the seguence register.
This is accomplished by the adder 144 which increments
the address in the sequence register 136 by one and de-
livers it over line 149 to the sequence register. The incre-
menting by one involves the addition of one to the ad-
dress bytes a0 through a3 (shown in FIG. 2C) and add-
ing the check symbol 14 by modulo 15 addition to the
check byte c(a) of the address portion held in the se-
quence register.

At the beginning of phase 2, the 3-byte operation com-
mand is received over bus 1 and delivered through the
control arithmetic processor to bus 2, for receipt by all
functional units. If the operation command happens to be
directed to the control arithmetic processor 22, the oper-
ation command register 132 delivers a signal to the count-
er and logic circuit 134. Otherwise, the processor does not
act during phase 3. During the latter part of phase 2, a
5-byte address portion is received over bus 1. If the oper-
ation command in register 132 requires it, the address
portion received during phase 2 is entered into the adder
144 and added to the residue-coded address portions con-
tained in one of the index registers 140 or 142. Other-
wise, the address portion received during phase 2 is merely
transferred through the adder 144 to the second bus.

During phase 3, a numeric operand word is received
over bus 1. In most cases, the processor 22 does not act
on the numeric operand word. However, it may be that
the previously received operation command required the
numeric operand word to be entered into one of the index
registers or the sequence register, in which case the proc-
essor does act during phase 3. The counter and logic cir-
cuit 134 controls the functioning of the other units of the
processor. It receives three control inputs 148 from the
CDU and delivers three status outputs 150 to the CDU.
A power switch 152 controls power to the processor, and
it has a switch control input 154 from the CDU and a
switch status output 156 leading to the CDU.

(5) Detection of faults in control arithmetic processor
and main arithmetic processor

The comparator logic complex 80 of the CDU shown
in FIG. 4 contains circuitry for detecting a variety of
faults in the various functional units of the computer
system. A description of typical portions of the compara-
tor logic complex will aid in understanding the manner
in which fault locations are determined and corrections
are made. FIG. 6 is a partial block diagram of the com-
parator logic complex 80, showing the circuitry involved
in correcting for a variety of faults of the control arith-
metic processor, shown at 22 in FIG. 1, which may occur
during an instruction step.

3,517,171

15

The portion of the comparator logic complex 80 of the
CDU shown in FIG. 6 comprises active status signal
input 58°, complete status signal inputs 60/, internal fault
signal inputs 62’, and bus checker status signal inputs 86.
Of these inputs, lines 160, 162 and 164 are from the con-
trol arithmetic processor 22. The four bus checker inputs
86 carry fault indicating signals when an error is detected
on one of the busses. Inputs E1 and E3 carry signals in-
dicating that the check sum of a product or residue code is
not equal to 1111, while lines E2 and E4 carry signals in-
dicating that a two-out-of-four error has been detected
in the byte being currently transmitted on the bus. An-
other group of inputs 98 are received from the pulse and
cycle counter 106 of the CDU. The inputs 98 comprise 13
lines. Line ¢; carries a pulse during every one of the ten
pulses of the first phase. Similarly, lines ¢, and ¢z carry
pulses during the second and third phases, respectively.
Line p0 carries a pulse during the first of the ten pulses
constituting each cycle while line p9 carries a pulse dur-
ing the tenth pulse of a cycle. (Note that phase 3 may last
for many cycles.) Still another input 9¢ to the compara-
tor logic complex receives the operation command held in
the register 108 of the CDU.

The partial circuit shown in FIG. 6 can detect the exist-
ence of ten types of faults occurring in the control arith-
metic processor. One of these faults is an internal fault,
such as internal disagreement of a duplicated critical func-
tion, which may occur at any time during an instruction
step. Other types of faults include the delivery of errone-
ous addresses from the control arithmetic processor or
the operation of the processor during times when it should
not be operating. If any of the ten types of faults occur,
an OR gate 166 delivers an output, which initiates recov-
ery procedures.

The ten types of faults in the control arithmetic proces-
sor which are monitored by the circuit of FIG. 6, and
which give rise to an output from OR gate 166, can be ex-
pressed by the following equation:

Equation 1
+ 2l (pO-+p1-+p2) -E2- B4+4-p7 -F1-E3
+09 Coapl +03(p4-E3 - X cop+Xeap® Acap

+p9 'Xcap'vcap) +Fcap

where ¢, ¢, and ¢3 are phase signals providing pulses
during every pulse period of their respective phase, p0
through p% represent pulses occurring at the first through
tenth pulse times during each cycle of a phase,

Ceap is the control arithmetic processor “complete” signal
eceived at 162,

Acap is the control arithmetic processor “active” signal
received over line 1606,

Keap is the output of an operation command decoder 168
on the Xqp, line at 194, indicating that the control arith-
metic processor should deliver an output during phase 3,
and

Fesp is the internal fault signal output from the control
arithmetic processor, received at line 164.

The first term in the above equation, p0-F2-E4, which
can occur during phase one, is detected by AND gate
170. This term represents the situation where, during the
first pulse (p®) of phase 1, the control arithmetic proc-
essor 22 deliver a 4-bit phase byte command, which it
veceives on bus one 10 to bus two 12. If the command
received by the control arithmetic processor over the
first bus (delivered by pulse and cycle counter 168 of the
CDU on its output 182) is proper, but the output of the
control arithmetic processor is erroneous, line B2 from
the first bus checker will not provide a fault signal but
line B4 from the second bus checker will deliver a fault-
indicating signal. When line E4 delivers a signal, but line
E2 does not during the first pulse of a cycle, AND gate
17¢ delivers an output to OR gate 172. If this occurs dur-
ing phase 1, AND gate 174 delivers an output to OR gate
166,

Tt

10

15

25

40

50

55

60

65

70

75

16

The second term in Equation 1, p5-E3, is monitored
by AND gate 176. This term covers the situation occur-
ring during the fifth pulse of phase 1, when the control
arithmetic processor has completed the delivery of an
address, held in its sequence register, to bus 2. During
pulses pl through p5 of phase 1, the control arithmetic
processor delivers a 5-byte address to the second bus. If
this 5-byte word is erroneocus, the second bus checker will
detect a residue code error, and line E3 will deliver a
fault-indicating signal. When such a fault-indicating sig-
nal occurs during pulse time p5, AND gate 176 delivers
an output through OR gate 172 to AND gate 174. If this
occurs during phase 1, AND gate 174 delivers a pulse to
OR gate 166.

A third term in Equation 1, p9-T,p, is monitored by
AND gate 178. This term represents the lack of a “com-
plete” indicating signal over line 162 from the control
arithmetic processor during the last pulse of phase 1. A
functional unit which performs an internal activity dur-
ing a phase delivers a complete-indicating pulse during
the last pulse of the phase. If, during pulse p9, no com-
plete-indicating pulse is received on line 162, AND gate
178 delivers a pulse to OR gate 172 which passes it through
AND gate 174 if it occurs during phase 1. OR gate 166
then receives a pulse.

The next three terms in Equation 1 represent faults
occurring during phase 2, and result in a pulse from one
of the AND gates 180, 182 or 184. The first of these
terms is (pO+-pl-+p2)-FZ-E4. During the first three
pulses of phase 2, the control arithmetic processor passes
a 3-byte operation command portion from bus 1 to bus 2
(without indexing it). If the 3-byte operation command
received on bus 1 is correct but the 3-byte operation com-
mand delivered to bus 2 is incorrect, the B2 line will
not deliver a fault signal but the line E4 will, If this
occurs, AND gate 180 will deliver a pulse to OR
gate 186.

Another fault occurring during phase 2, represented
by the term p7-E7-E3, is the delivery of an erroneous
5-byte address during puise p3 through p7. Whether the
address is erroneous or not is not determined by the bus
checkers until all five bytes have been received, i.e., not
until pulse p7. If, at pulse p7, the address delivered over
the first bus to the processor is correct, line E1 will not
deliver a fault-indicating signal. However, if the address
delivered by the control arithmetic processor to the sec-
ond bus is erroneous, line E3 will deliver a fault-indicat-
ing signal. If both of these events occur at pulse p7,
AND gate 182 will deliver a pulse to OR gate 186. The
other term during phase 2, p9-T,y, represents the fact
that AND gate 184 checks for receipt of a complete-in-
dicating signal during pulse p9.

The next three terms in Equation 1 represents faults
occurring during phase 3, and result in a pulse from one
of the AND gates 188, 190 or 192. Two of these three
faults are monitored only for the case wherein the con-
trol arithmetic processor has been commanded to act dur-
ing phase 3. Whether or not the control arithmetic proc-
essor has been designated to operate during phase 3 is
determined by an operation command decoder 168. The
input 90 of the decoder carries the operation command
in the register 108 of the CDU. If this operation com-
mand, delivered during phase 2, indicates the control
arithmetic processor is to operate during phase 3, line
194 will carry an output X,,, during the entire phase 3.

The only operation which would be commanded of
the control arithmetic processor during phase 3 is an
instruction to unload the 20-bit address in one of its
three registers 140, 142 and 136. A fault in unloading is
indicated by the term p4-E3-X,,, in Equation 1, during
phase 3. The unloading of the 5-byte address in one of
the registers of the control arithmetic processor occurs
during the first five pulses p@ through p4 of phase 3. If,
during the fifth pulse p4, a residue error is detected by

3,517,171

17
the second bus checker, a fault-indicating signal will be
received at E3.

If this occurs when the control arithmetic processor is
supposed to operate, another input X,,, will be delivered
to AND gate 188, which will deliver a pulse through OR
gate 196. Such an occurrence during phase 3 results in
a pulse through gate 198 to OR gate 166. The other term,
p9-Coap, indicates lack of a “complete” signal at the
end of an active phase 3.

The term Xepp Aeap in Equation 1 indicates the ac-
tivity of the control arithmetic processor during phase 3
when it should not be active. The fact that it should not
be active is indicated by the appearance of X.,, and
the fact of activity is indicated by the signal Agy, from
line 16G. Thus, various faults can be detected by deter-
mining whether the control arithmetic processor is op-
erating when it has been designated to operate or to be
quiescent.

The various gates which utilize outputs from the op-
eration command decoder 168 serve as comparing means
for comparing signals indicating the functioning of the
control arithmetic processor with signals from the de-
coder which indicate whether the processor has been
designated to perform an operation. The term Feuy ocC-
curs when internal circuits of the control arithmetic proc-
essor detects a discrepancy. A pulse on the Fo,p line 164
may occur at any time, and it is transmitted directly to
OR gate 166.

If any of the foregoing ten types of faults occurs in
the control arithmetic processor 22, the OR gate 166
delivers a pulse on its output 167. A pulse at 167 is
delivered to OR gate 169, which receives similar pulses
from other circuits of the comparator logic complex 80,
that detect faults in other functional units. The pulse at
167 passes through the OR gate 169 to the reset line 54°.
The pulse at reset line 54’ resets all of the functional
units, and commands the pulse and cycle counter 100 of
the CDU to generate signals commanding a roilback to
the last rollback point address. Such rollback point is
held in the rollback point register 116 of the CDU, and
rollback is accomplished in the manner described above.

The pulse from OR gate 166 also passes to a CAP
flip-flop 191. This pulse changes the CAP flip-flop to a
state wherein it thereafter delivers an output “one” on
its output line 193 (until such time as recovery has been
completed). In addition the pulse over line 167 passes
to an AND gate 195. The initial pulse delivered over
167 to the AND gate 195 does not go through the gate
195. This is because the flip-flop 191 was not delivering a

signal on jts output 193 at the time a pulse was delivered :

over line 187. Thus, the first pulse output from OR gate
166 changes the state of the flip-flop 191 and causes the
computer program to roll back and resume the program
at the last rolliback point which has been passed.

If the fault in the control arithmetic processor 22 is
transient, the program will continue without the genera-
tion of another fault-indicating signal from OR gate 166,
and flipflop 191 wil be placed back into its original state,
wherein it delivers no output. However, if a fault again
cccurs in the control arithmetic processor when the same
or an earlier instruction is encountered, another pulse
will be delivered from the OR gate 166 on its output
167. This second pulse will pass through AND gate 195,
because flip-flop 185 is now delivering an output at 193.
The output 197 from the AND gates 195 is one of the
switch control outputs 82’ that controls the power
switches. A pulse on line 197 is delivered to the currently
operating, or original, main arithmetic processor power
switch to turn it off and to switch on power to the spare
main arithmetic processor in the system. The second fault
signal at OR gate 166 is also delivered over the reset line
54’ to again cause the program to roll back to the stored
rollback point.

FIG. 8 shows a simplified example of a switching
arrangement, for the case of an original functional unit

[

10

15

20

25

30

40

60

75

18

38A and only one spare 38B. Such a unit may be a con-
trol arithmetic processor. A pulse from one of the switch
control outputs 197 (shown in FIG. 6) of the CDU,
which controls the functional units of FIG. 8, enters
inputs 56A and 56B. The input at 56A triggers flip-flop
57A and causes it to deliver a signal to relay 59A that
opens the contacts 61A. The same input delivered at
56B triggers flip-flop 57B and causes it to deliver a signal
to relay 39B that opens the contacts 61B. Thereafter, the
original unit 38A no longer receives power from power
line 46, while spare unit 38B does receive power. Thus,
unit 38A is replaced by its spare 38B.

FIG. 7 shows a portion of the circuitry of the com-
parator logic complex 80 which allows for the detection
of six types of faults in the main arithmetic processor,
shown at 20 in FIG. 1. The main arithmetic processor
performs the more complex computations, such as addi-
tion, subtraction, multiplication, etc. The main arithmetic
processor 28 is quiescent during phase 1. It is also guies-
cent during phase 2 except that it may receive an opera-
tion command during phase 2 instructing it to perform
an operation on a numeric operand word to be received
during phase 3 or to deliver a previously computed result
during phase 3. Such an operation command portion will,
of course, be entered in the operation command register
108 of the CDU,

The portion of the operation logic complex 80 of
FIG. 7 includes inputs 58', 60’, 62/, 86, 88’ and 90, and
outputs 54’ and 82 which were described in connection
with FIG. 6. However, of the active, complete, and inter-
nal fault line inputs, the particular lines 202, 204 and
206 from the main arithmetic processor are shown in
particular. The six types of faults in the main arithmetic
processor 26 monitored by the cireuit of FIG. 7 can be
expressed by the following equation:

Rmap‘:¢1'Amap+¢2(Amap+P3 'Umap) -+
P3° [Xmap'Amap+Xmap *Cnap E3-p8] “+Frap

Equation 2
where

o1, P2, b3, p3, and p8 are as defined above for Equation 1,

Cinap is the “complete” signal from the main arithmetic
processor,

Amap Is the “active” signal from the main arithmetic
processor,

Kmap 18 the output 208 of the operation command decoder
168 indicating that the main arithmetic processor should
operate during phase 3, and

Finap 1s the internal fault signal of the main arithmetic
Processor.

During phase 1, the main arithmetic processor should
be quiescent. Therefore, if an active signal Ay, is re-
ceived over line 202 during phase 1, an error is indicated
and the AND gate 210 delivers an output. Similarly, the
main arithmetic processor should produce no output
during phase 2; if it does, AND gate 211 will receive
an input Ap,, and will deliver an output. A completion
signal Cpep occurs on line 204 after the main arithmetic
processor has accepted and stored the 3-byte operation
command during pulses p® through p2 of phase 2 (to
determine whether it applies to the main arithmetic
processor). Its absence during pulse p3 is indicated by
the term p3- Ty, which causes AND gate 213 to deliver
a pulse.

During phase 3, the main arithmetic processor 20 is
designated to be active or inactive, according to the
operation command received during phase 2. If it is desig-
nated as inactive, an Xp,, signal indicating inactivity
will be deliver to gate 214. If an Ay, signal occurs
when Xp,, is present, it indicates a fault by reason of
activity when the processor should not be active. If the
processor should be active then during pulses p1 through
p8 of the last cycle of phase 3 an output will be delivered
from the processor to the second bus. At the pulse p8,

3,517,171

19
a complete signal also will be received over line 204 from
the processor. If the output is erroneous, the line E3 will
deliver a pulse to AND gate 216 and cause it to deliver
a fault-indicating pulse. Pulses from gates 214 and 216
pass through AND gate 217; if they occur during phase
3 they also pass through AND gate 215 to OR gate 218.

A fault occurring during any of the three phases, in-
cluding an internal fault signal Fiyap, will result in OR
gate 218 delivering an output. If OR gate 218 delivers
an output, a recovery process Is initiated in the same
manner as for the control arithmetic processor described
above. However, the power switches controlling the main
arithmetic processor units will then be operated. A Fault
originating from the main arithmetic processor fault
detecting circuitry of FIG. 7 will result in AND gate
220 delivering an output over line 222 which removes
power to the currently operating main arithmetic proces-
sor and closes the power switch leading to the spare.

The CDU 18 contains additional circuitry for moni-
toring each of the other functional units. The monitoring
schemes are chosen to detect the faults most likely to
occur in each unit.

Although particular embodiments of the invention
have been described and illustrated herein, it is recog-
nized that modifications and variations may readily occur
to those skilled in the art, and, consequently, it is in-
tended that the claims be interpreted to cover such modi-
fications and equivalents.

What is claimed is:

L. In a computer system including a plurality of func-
tional units for performing operations when designated
to do so by the receipt of operation command signals,
each of said units having an input, means coupled to said
input for preparing the unit to perform an operation
when designated to do so by an operation command, and
an output for delivering data, the iraprovement compris-
ing:

first means for generating operation command signals

designating at least one of said functional units to
perform an operation;

means coupling said first means to said inputs of said

plurality of functional units, for carrying said oper-
ation command signals thereto;
moniioring means coupled to a first plurality of said
functional units for monitoring their functioning;

comparing means responsive to said operation com-
mand signals generated by said first means and to
said monitoring means, for comparing the function-
ing of each of said first plurality of functional units
with the designations of said operation command
signals; and

means coupled to said comparing means for perform-

ing fault-correcting procedures, whereby to direct
fault correction to a functional unit which does not
perform in a manner directed by said operation
command.

2. A computer system as defined in claim 1 wherein:

said monitoring '‘means comprises means for generat-

ing signals indicating the occurrence of active per-
formance of an operation by internal circuitry of
said first plurality of functional units, whereby to
check whether a unit designated to be active is actu-
ally active.

3. A computer system as defined in claim 1 wherein:

each of said first plurality of functional units includes

means coupled to its output for delivering data en-
coded in an error-detecting code format; and

said monitoring means comprises bus means coupled

to said outputs of said first plurality of functional
units, and bus checker means coupled to said bus
means for indicating the occurrence of erroneously
encoded data on said bus means.

4, A computer system as defined in clajm 1 including:

a plirality of spare functional units; and wherein

said means for performing fault-correcting procedures

15

20

25

30

35

40

60

70

o

20
includes means for removing power to a functional
unit and activating a spare functional unit.

5. A computer system as defined in claim 1 including:

memory means defining a program having a multi-

plicity of instruction steps, said memory means in-
cluding means defining a plurality of rollback points
which designate instruction steps at which it is con-
venient to resume said program; and wherein

said comparing means include means for interrupting

the operation of said computer system and resum-
ing its operation at an instruction step designated by
one of said rollback points.

6. In a computer system including a plurality of func-
tional units for performing operations and counter means
for controlling the times of operations of said functional
units, the improvement comprising:

means in said counter means for generating signals de-

fining discrete intervals;

means coupled to one of said functional units for indi-

cating the existence of a predetermined state of ac-
tivity of said unit;

gate means responsive to said signals defining discrete

intervals and to said means coupled to one said
functional unit, for generating fault signals when said
functional unit has said predetermined state at one
of said predetermined intervals; and

means responsive to said fault signal from said gate

means, for directing fault-correcting procedures to
said functional unit.

7. A computer system as defined in claim 1 including:

a spare unit for replacement of said functional unit;

and wherein

sald means responsive to said fault signals comprises

means for removing power to said functional unit
and activating said spare unit to replace said func-
tional unit.

8. A computer system as defined in claim 6 including:

memory means defining a program having a multi-

plicity of instruction steps, said memory means in-
cluding means defining a plurality of rollback points
which designate instruction steps at which it is con-
venient to resume said program; and

control means responsive to said fault signals for inter-

rupting the operation of said computer system and
resuming its operation at an instruction step desig-
nated by one of said rollback points.
9. A self-testing and repairing computer comprising:
a plurality of separate functional units for performing
compuier operations, a plurality of said units nor-
mally being in an operational state and at least one
of said units normally serving as a spare unit for
replacing a faulty operational unit, each of said
units having input means for receiving data encoded
by an error-detecting code, means for acting on data
from said input means, and output means for trans-
mitting data encoded by an error-detecting code;

bus means for coupling together said output means
from a plurality of said functional units and said
input means of at least one of said functional units;

checking means coupled to said bus means for gen-
erating fault indicating signals when data on said bus
means has an error of the type indicated by a pre-
determined error-detecting code;

memory means defining a program having a multi-

plicity of sequenced instruction steps, for governing
the operation of said functional units; and

control means coupled to said memory means and said

checking means, said control means including means
for rolling back the program in said memory means
to a previous instruction step after the generation of
fault indicating signals, means for detecting which
functional unit delivered data at a fault time when
said checking means generated a fault indicating sig-
nal, and means for replacing said unit which deliv-
ered data at said fault time with said spare functional

3,517,171

21

unit after at least one operation of said means for
rolling back the program to a previous instruc-
tion step.

10. A self-testing and repairing computer comprising:

a plurality of separate functional units for performing
computer operations, each of said units having input
means for receiving data encoded by an error-detect-
ing code, means for acting on data from said input
means, and output means for transmitting data en-
coded by an error-detecting code;

bus means for coupling together said ouiput means
from a plurality of said functional units and said
input means of at least one of said functional units;

checking means coupled to said bus means for gen-
erating fault indicating signals when data on said
bus means has an error of the type indicated by a
predetermined error detecting code;

memory means for storing a program having a multi-
plicity of sequenced instructions, said program in-
cluding a plurality of roll back point instructions
interspaced between other instructions of said pro-
gram, said roll back point instructions defining con-

10

15

22
venient points for the resumption of said program
after an interruption; and
control means coupled to said memory means and said
fault indicating signals generated by said checking
means, for performing fault-correcting procedures
including rolling back the program in said memory
means after the receipt of said fault indicating sig-
nals, to the last roll back point instruction which has
been passed.
References Cited

UNITED STATES PATENTS

3,252,149 5/1966 Weida et al. _____ 340-—172.5
3,302,182 1/1967 Lynch et al. _____. 340—172.5
3,303,474 2/1967 Moore et al, oo 340—172.5
3,377,623 4/1968 Reutetal. ___.____ 340—172.5
3,409,877 11/1968 Alterman et al. ... 340—172.5

MALCOLM A. MORRISON, Primary Examiner

20 C. E. ATKINSON, Assistant Examiner

US. ¢l X.R.

340—172.5

